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ABSTRACT 

We represented variability and epistemic uncertainty in LCA with different approaches in the same framework. Probability distributions 

are commonly used to represent variability in populations, while fuzzy intervals are an alternative approach for representing epistemic 

uncertainty in parameters when information is incomplete or imprecise. We used Dempster-Shafer theory to combine both approaches for 

representing variability and epistemic uncertainty and propagated them with Monte-Carlo simulation through the LCA model. We applied 

approaches to a case study of dairy farms to estimate their potential direct environmental impacts. Results indicated that consideration of 

incomplete information greatly increases overall uncertainty in impacts, as measured by a “relative interval width”, which was useful for 

comparing the influence of input uncertainty among impact categories. Thus, our method provides conservative estimates of impacts by 

considering incomplete information, which is ignored by the classic probability method commonly used in LCA. 
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1. Introduction 
 

Life Cycle Assessment (LCA) is a useful tool to estimate potential environmental impacts and resource use of 

farming systems (van der Werf and Petit 2002; Thomassen et al. 2008). The reliability of LCA results, which 

depends primarily on the quality of data and their pertinence for the system studied, is affected by uncertainty 

(Weidema and Wesnaes 1996; Finnveden 2000). Including uncertainty analysis in LCA may yield results that 

provide more useful information for decision making (ISO 2006; Heijungs 1996). Therefore, there is a need to 

improve uncertainty analysis in LCA to increase the reliability of its results. 

Uncertainty analysis includes a variety of methods that are used to express and propagate uncertainty in many 

fields, such as risk analysis (Vose 2008) and LCA (Benetto 2005; Bjorklund 2002). Most studies define two 

main types of uncertainty (variability and epistemic uncertainty), which have fundamental differences (Morgan 

and Henrion 1992). Variability (also called stochastic uncertainty) represents inherent differences among 

individuals in a population. It cannot be reduced but can be represented more precisely if more population data 

are available (De Rocquigny et al. 2008; Vose 2008). Probability distributions have been used widely in LCA 

(Basset-Mens et al. 2009; Henriksson et al. 2011; IPCC 2006b) to represent the variability due to randomness in 

the distribution of a given sample (e.g., with a mean, variance, and normal distribution). In contrast, epistemic 

uncertainty is defined as lack of knowledge (imprecise and incomplete information) about the true value of a 

variable or about the system mechanism. It can be decreased if more precise information or more accurate 

measurement becomes available. In LCA, epistemic uncertainty in parameters is often represented with 

probability distributions (Lloyd and Ries 2007; Huijbregts 1998), and both types of uncertainty are propagated 

by Monte-Carlo simulation (MCS), especially in complex models.  MCS is an effective and robust way to 

estimate the uncertainty in predicted potential impacts (Payraudeau et al. 2007; Sonnemann et al. 2003). Some 

authors (Tan 2008; Reza et al. 2013; Andre and Lopes 2012; Mauris et al. 2001; Chevalier and Téno 1996), 

however, emphasize the difference between variability and epistemic uncertainty and argue that fuzzy-set theory 

(Zadeh 1978), with subjective degrees of plausibility/possibility, better represents uncertainty due to imprecise 

and incomplete information.  

Since variability and epistemic uncertainty represent distinct states of knowledge, many studies have modeled 

them separately in the same framework. For example, Ferson et al. (2002) constructed “probability boxes” by 

combining probability theory and set theory. Baudrit et al. (2006) represented random variability and 

imprecision with probability and possibility distributions, respectively, and then propagated them for risk 

assessment. And Baraldi and Zio (2008) combined MCS and the possibilistic approach to propagate uncertainty. 

These three studies introduced the Dempster-Shafer theory (Dempster 1966; Shafer 1976) to incorporate 
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imprecise information into probabilistic models, making a bridge that combines uncertainties from different 

sources (Yager 1987). 

Although variability and epistemic uncertainty have been defined, and sometimes analyzed, separately in 

some LCA studies (Heijungs and Huijbregts 2004; Basset-Mens et al. 2009), few studies (Clavreul et al. 2013) 

have modeled them in the same framework. The aim of this study is to demonstrate how to combine two types of 

uncertainty, via Dempster-Shafer theory, to estimate potential environmental impacts of dairy farms. We then 

compare this method to classic probability methods. 

 

2. Methods 
 

We used probability distributions and fuzzy intervals to represent variability and epistemic uncertainty, 

respectively. These two types of uncertainty were propagated into LCA results by MCS and interval analysis 

using R software (R Development Core Team 2012). For each impact category, distributions of impact were 

represented by a Dempster-Shafer structure and mean impacts were represented by fuzzy intervals. In addition, 

two other methods for analyzing uncertainty were applied for comparison purposes. 

2.1. Representing variability with probability distributions 

 

In a frequentist approach, a probability distribution assigns a probability of any possible event in a random 

experiment. It is often used to represent the variability of a variable. A random variable X, which is an element 

of all real numbers (ℛ), has a probability Pr(x) of having value x. In addition, the probability distribution can be 

described by its cumulative distribution function (CDF) and explained as the probability that X is less than x: 

 

𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℛ Eq. 1 

 

In general, determining a distribution requires empirical data to identify its shape and basic parameters (e.g., 

mean and variance). If the amount of empirical data is sufficiently large, it can be considered to represent the 

entire population. However, since data acquisition is often limited by time and cost in LCA studies, probability 

distributions are generally determined subjectively based on the literature or expert judgment (Heijungs and 

Frischknecht 2005). 

MCS is the most common method for propagating variability to estimate uncertainty in LCA studies. It 

consists of sampling input variables from their distributions and then calculating potential impacts through the 

model. By repeating the MCS many times, a CDF can be constructed to predict a probability range that 

represents overall uncertainty in impacts due to uncertainty in input variables. 

2.2. Representing epistemic uncertainty with fuzzy intervals 

 

Fuzzy-set theory is an alternative approach to express epistemic uncertainty. In this approach, an uncertain 

variable is modeled by a set of “fuzzy” intervals, each with a level of possibility (α) that ranges from 0 (least 

possible) to 1 (most possible). Denoting each fuzzy interval as π(αi), there is: 

 

𝜋(𝛼 = 1) ⊆ 𝜋(𝛼𝑖 ∈ [0,1]) ⊆ 𝜋(𝛼 = 0) Eq. 2 

 
An uncertain variable can be mapped by a membership function defined by these “fuzzy” intervals and their 

corresponding levels of possibility. Commonly-used membership functions are shaped as triangles or trapezoids 

having minimum, maximum and mode values (mode intervals for the latter) (Fig. 1). For example, the 

minimum-maximum range of variable x, called the “support” (α=0), indicates all possible values of x. The mode 

(or mode interval), called the “core”, indicates the most likely value(s) (α=1). At any given α level, there is a 

corresponding interval (called the “α-cut interval”). To propagate uncertainty, the fuzzy intervals of input 

variables are decomposed at each α level, and interval arithmetic is applied to generate a set of fuzzy intervals of 

the final result. 
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Figure 1. Triangular (left) and trapezoidal (right) fuzzy-interval membership functions for an uncertain variable 

x defined by core, support and α-cut intervals. 

2.3. Dempster-Shafer theory 

 

Dempster-Shafer theory (DST) is a “mathematical theory of evidence” introduced by Dempster (1966) and 

further developed by Shafer (1976). It is a generalization of discrete probability theory in which probabilities are 

assigned to sets of values rather than a single value. One important feature of DST is that imprecise information 

can be used to represent the state of knowledge quantitatively. It includes three basic functions: the basic 

probability assignment (bpa) function (or “mass function”), the belief function (Bel) and the plausibility function 

(Pl). 

The bpa for a given set A (denoted m(A)) indicates the proportion of all available evidence that supports the 

supposition that a particular element of x belongs to set A. It has axioms such as: 

 

𝑚: 2𝛺 → [0, 1] Eq. 3 

𝑚(∅)  =  0 Eq. 4 

∑ 𝑚(𝐴) = 1 𝐴∈2𝛺  Eq. 5 

 
where 2Ω is the power set that comprises all possible subsets, including the empty set ∅. A is any subset (called a 

“focal element”) of power set. The belief and plausibility functions are defined from the bpa. The belief function 

of A is the sum of the bpa of all of the subsets (B) of A (B ⊆ A): 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆𝐴 , 𝐵 𝑖𝑠 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝐴, 𝑎𝑛𝑑 𝐵 ≠ ∅ Eq. 6 

The plausibility function of A is the sum of the bpa of any subset (C) of power set with the condition that the 

intersection of C and A is a non-empty set (C⋂A ≠ ∅): 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐶), 𝐶 ∈ 2Ω, 𝑎𝑛𝑑 𝐶 ≠ ∅ 𝐶⋂𝐴≠∅  Eq. 7 

The three concepts can also be used in continuous probability distributions where any element of the 

uncertain parameter x is expressed as an interval ([ai, bi]) with bpai (where ai ≤ bi for all i). Thus, the power set 

A is the collection of these intervals with their corresponding bpai, and the sum of bpai equals 1. So, Eq. 6 and 7 

can be transformed as: 

 

𝐵𝑒𝑙(𝑥 ∈ ]−∞, 𝑥]) = ∑ 𝑚([𝑎𝑖, 𝑏𝑖])𝑏𝑖≤𝑥  Eq. 8 

𝑃𝑙(𝑥 ∈ ]−∞, 𝑥]) = ∑ 𝑚([𝑎𝑖, 𝑏𝑖𝑎𝑖≤𝑥 ]) Eq. 9 
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The belief and plausibility functions can be considered the lower and upper probabilities of a given value of x 

(Ferson et al. 2002), respectively, and the true probability distribution of x (Pr(x)) lies inside them, interpreted 

as: 

 

𝐵𝑒𝑙(𝑥)  ≤   𝑃𝑟(𝑥)  ≤   𝑃𝑙(𝑥) Eq. 10 

with an interval of the mean of x 

 
∑ 𝑚𝑖𝑎𝑖 ≤ 𝐸(𝑥) ≤ ∑ 𝑚𝑖𝑏𝑖 Eq. 11 

 

If uncertain parameter x is determined by a single set of values (ai = bi for all i) instead of intervals, the belief 

and plausibility functions converge on the same distribution, as in a classic CDF. 

We considered fuzzy intervals of uncertain parameters as focal elements, used DST to combine variability 

and epistemic uncertainty in input-parameter values, and propagated them with MCS. Thus, assuming that 

impact category (y) is calculated by the model (f(x1, x2…xk, xk+1, xk+2…xn)), we: 

1. Randomly generate a matrix (B rows (10,000) × k columns) of the first k variables using each one’s 

probability distribution while preserving correlations between them: Mb(x1, x2…xk). 

2. Select a possibility level αi (e.g., assign values from 0 to 1 with step 0.1) and its corresponding fuzzy 

interval (πk+1
, π

k+2
… π

n) for the last n-k uncertain parameters (xk+1, xk+2…xn). 

3. Using the variables in each row of Mb(x1, x2…xk), calculate minimum and maximum values of y with all 

possible combinations of the last n-k variables (= 2(n-k)) in αi, with a lower bound of L(y) = max [f(x1, 

x2… xn)] and an upper bound of U(y) = min [f(x1, x2… xn)]. For a model with only monotone functions, 

the optimization algorithm can be simplified by interval analysis.  

4. Repeat steps 2 and 3 for all αi to generate the fuzzy intervals of yb ([U(y), L(y)]b) and find the support of 

yb (denoted π (yb)α=0). Then attribute a mass (mb = 1/B) to the support. 

5. Repeat steps 2-4 B times to obtain a set of supports (π1, π2,…, πB) as focal elements, which is used to 

construct lower (belief function) and upper (plausibility function) bounds of y using Eq. 8 and 9. 

6. Calculate the mean of the lower and upper bounds of y using Eq. 11 for each α to generate fuzzy 

intervals of the mean of y. 

 

For example, assume that indicator Y is modeled by a function with two uncertain parameters (X1 and X2), 

𝑌 = 𝑋1 × 𝑋2 , where X1 is normally distributed (X1 ~ Nprob(100,20)) and X2 is modeled by a triangular 

membership function (X2 ~ Tfuzzy(2, 6, 3)). Thus, we construct the lower and upper bounds of Y and fuzzy 

intervals of the mean of Y at each α (Fig. 2) by following the above steps. Consequently, this procedure 

generates a set of intervals (11, in this study) with their corresponding α, and the mean of Y is represented as a 

membership function of this fuzzy set that is determined by its support, core and other α-cut intervals. 

 
Figure 2. (Top) Lower (belief) and upper (plausibility) bounds of indicator Y at different possibility levels (α) 

and (bottom) fuzzy intervals of the mean of Y with support (α=0), core (α=1) and two α-cut intervals (at α=0.3 

and 0.6). 
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2.4. Case study 

 

We constructed an LCA model to estimate environmental impacts (climate change, acidification and 

eutrophication) of on-farm emissions of dairy farms. The functional unit was 1 metric ton of fat-and-protein 

corrected milk (FPCM). This model was based on the EDEN-E (Evaluation de la Durabilité des ExploitatioNs) 

tool, developed previously to estimate LCA-based environmental impacts of individual dairy farms (van der 

Werf et al. 2009). In this study, we focused only on direct impacts of the milk-production subsystem, because 

they were affected directly by uncertainty in emission factors. We used data from 41 conventional dairy farms 

from EDEN-E datasets. We obtained input variables such as animal production (e.g., meat, milk), number of 

animals by age and sex, and usable agricultural area. Other variables such as quantities of nitrogen (N) in farm 

inputs and outputs (e.g., fertilizers, feed, waste, animals), energy agents (e.g., diesel, gasoline, electricity), 

lubricants and plastics were also taken from EDEN-E. In addition, emission factors were used to estimate 

gaseous emissions; their default values and ranges of uncertainty were taken from the literature (IPCC 2006a; 

EMEP-CORINAIR 2001). These variables were used in the model to estimate direct impacts of conventional 

dairy farms. We considered two types of uncertainty in input variables: variability in structural characteristics of 

sampled farms and epistemic uncertainty in emission factors. Impact categories were calculated by multiplying 

emissions with the characterization factors of the CML-IA database (Guinée et al. 2002). 

To compare results with those of the classic probability method, we made three scenarios to analyze 

uncertainty in the LCA model. For all scenarios, we used truncated normal or uniform distributions to represent 

variability in each farm characteristic because they provided only non-negative values. Means and standard 

deviations for each characteristic were determined from the empirical EDEN-E sample. Correlations between 

these variables were preserved using Spearman rank-order correlation (Helton and Davis, 2003). In the first 

scenario (S1), uncertainty in emission factors was ignored (default constants used). In the second scenario (S2), 

we considered uncertainty in emission factors with triangular probability distributions. In S2, default values and 

ranges of uncertainty were used as the mode and minimum/maximum values in the distribution, respectively. In 

the third scenario (S3), we used fuzzy intervals with triangular membership functions to represent uncertainty in 

emission factors. The same default values and ranges of uncertainty were used as the core and support in the 

membership function, respectively. Indeed, S1 can be considered a special case of S3 that considers only the 

core interval (α=1). Each emission factor was assumed to be independent. Scenarios S1 and S2 used MCS to 

propagate uncertainties, while S3 combined MCS and interval arithmetic to generate an interval distribution. 

Simulations were repeated 10,000 times. In S3, finding minimum and maximum impact values for each of the 

10,000 replicates theoretically required calculating all possible combinations of emission factors (2m 

combinations, m = number of emission factors), but doing so would have increased calculation time 

considerably. Therefore, since the LCA model was monotonic (emission factors used only addition and 

multiplication), calculations were optimized by using the minimum and maximum of each α-cut interval of 

emission factors. 

Statistics (mean, 5th and 95th percentiles) of impact indicators were calculated as single values in S1 and S2 

and as intervals in S3. To compare uncertainty in mean impact between categories, we calculated a “relative 

interval width” (RIW), equal to the maximum of a statistic’s interval minus its minimum, divided by its mode. 

Thus, the RIW of mean impact in S3 was the width of the indicator’s mean interval (i.e. its support) divided by 

its core (i.e. the most likely mean value). Because uncertainty in emission factors was assumed to be zero in S1 

and a known distribution in S2, they were considered to have intervals of zero width. 

 

3. Results 
 

Statistics of the three impact categories differed by scenario (Table 1). For all three impact categories, the 

difference between the 5th and 95th percentiles (Ipercentile) in S1 and S2 was narrower than the difference between 

the minimum of the 5th-percentile interval and the maximum of the 95th-percentile interval in S3, indicating 

higher overall uncertainty in S3. The increase in overall uncertainty was due to inclusion and representation of 

epistemic uncertainty in emission factors. The percentage increase in Ipercentile from S1 to S2 was 25% for climate 

change, 80% for acidification, and 0% for eutrophication, while that from S1 to S3 was 212% for climate 

change, 372% for acidification and 29% for eutrophication. Thus, overall uncertainty in impacts increased 

greatly when uncertainty in emission factors was considered as imprecise information. 
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Table 1. Statistics of potential climate change, acidification and eutrophication impacts per t of fat-and-protein-

corrected milk (FPCM) in three scenarios that represented uncertainty in emission factors (EFs) differently: S1 - 

no uncertainty in EFs, S2 - probability distributions for EFs, S3 - fuzzy sets for EFs. 

  Climate change  Acidification  Eutrophication  

  (kg CO2 eq./t FPCM) (kg SO2 eq./t FPCM) (kg PO4 eq./t FPCM) 

Statistics S1 S2 S3 S1 S2 S3 S1 S2 S3 

Lower limit (5th percentile)  775 852 [511, 1383] 8.1 9.5 [3.6, 18.2] 4.3 3.9 [2.7, 5.0] 

Mean (support of the mean) 1065 1208 [718, 1874] 10.8 14.3 [4.8, 24.3] 8.6 8.2 [6.6, 9.4] 

Upper limit (95th percentile) 1400 1632 [947, 2459] 14.2 20.5 [6.3, 32.4] 13.7 13.3 [11.4, 14.8] 

Relative interval width of  the mean 0% 0% 89% 0% 0% 134% 0% 0% 35% 

 

When visualized as CDFs (Fig. 3), S1 and S2 were represented by a single CDF each, while S3 was represented 

by two CDFs (plausibility and belief functions) defining upper and lower bounds of impact in each category 

(Fig. 3). These bounds were more widely separated for acidification and climate change impact than 

eutrophication. 

 

 
Figure 3. Cumulative density functions of direct (on-farm) climate change, acidification, and eutrophication 

impacts per t of fat-and-protein corrected milk (FPCM) in three scenarios that represented uncertainty in 

emission factors (EFs) differently: S1 - no uncertainty in EFs, S2 - probability distributions for EFs, S3 - fuzzy 

sets for EFs (solid curves bound 90% of possible values). Vertical gray lines indicate the mean impact (support 

of mean impact in S3) of each scenario. 

 

Membership functions of mean impacts in S3 were nearly triangular, with minor skewness (Fig. 4). For 

example, the support of climate change ranged from 718-1874 kg CO2 eq./t FPCM, with a core of 1065 kg CO2 

eq./t FPCM. Note that the core of mean impact in S3 equaled the mean impact in S1, for which default values 

(considered as the true values) were used for emission factors. RIWs of mean impacts in S3 indicate that 

uncertainty in mean acidification impact (134%) was larger than that in mean climate change (89%) or 

eutrophication (35%) impacts (Table 1). However, S1 and S2 each had a single mean (e.g., 1208 and 1065 kg 

CO2 eq./t FPCM, respectively) and RIWs of mean impact of 0%. 
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Figure 4. Fuzzy-interval distributions of means of climate change, acidification, and eutrophication impacts per t 

of fat-and-protein-corrected milk (FPCM) in scenario 3 (based on Dempster-Shafer theory). 

 

4. Discussion 
 

We focused on two sources of uncertainty in this case study: variability (in farm characteristics) and 

epistemic uncertainty (in emission factors). The classic probabilistic approach expresses both epistemic 

uncertainty and variability with probability distributions; however, subjectively defining probability distributions 

may underestimate overall uncertainty. Therefore, unknown distributions should be considered as another source 

of uncertainty due to incomplete information and modeled with fuzzy intervals. If both probability distributions 

and fuzzy intervals exist in the same analysis, our DST-based method can combine them to estimate overall 

uncertainty in impact (S3). It provides a more conservative range of uncertainty (i.e. the interval between the 

minimum of the 5th percentile and maximum of the 95th percentile) than the classic probabilistic approach. Since 

S1 considered only variability in farm characteristics, the increase in overall uncertainty in impacts in S2 and S3 

compared to S1 reflects the contribution of epistemic uncertainty in emission factors alone. Considering 

emission factors as fuzzy intervals (S3) increased overall uncertainty more than considering them as random 

values (S2). Unlike variability, epistemic uncertainty in emission factors can be reduced when more precise 

information becomes available. For example, any distribution inside the bounds of plausibility and belief yields 

a mean value and a smaller range of uncertainty, because the true values (S1) or distributions (S2) of input 

variables are known or assumed to be known.  

In parallel, the imprecision in emission factors was propagated into mean impacts, which were constructed 

from membership functions of their fuzzy sets. Those who used a similar propagation procedure in LCA 

(Clavreul et al. 2013) or risk assessment (Baudrit et al. 2006) studies considered all fuzzy intervals of impact as 

a set of random intervals with equal probability and then calculated a weighted-mean interval from upper and 

lower bounds of distributions. In contrast, we separated this process into two steps: (1) estimate the overall range 

of all possible impact values using the supports of emission factors and (2) model mean impacts with fuzzy 

intervals. Indeed, showing the membership function of mean impact instead of a weighted-mean interval 

provides more information to decision makers, such as the levels of possibility corresponding to the most likely 

mean impact and mean impacts of best- and worse-case scenarios based on the degree of possibility. This 

information allows a more precautionary approach than a simple interval of mean impact for evaluating the 

magnitude of and uncertainty in predicted impacts. For fuzzy intervals, the RIW of mean impact is a 

comparative indicator that reflects the influence of explicitly representing the knowledge of information as 

incomplete (an unknown distribution), unlike the classic probability method, which ignores this source of 

uncertainty. It enables the influence of epistemic uncertainty on different impacts to be compared when 

calculating a coefficient of variation is difficult or complex (e.g., in S3, which comprised multiple probability 

distributions). Comparing RIWs among impact categories illustrates the relative influence of epistemic 

uncertainty on overall uncertainty in the impacts of each. If overall uncertainty is hindering decision making, this 

information could lead decision makers to focus on reducing the sources of epistemic uncertainty that contribute 

the most to uncertainty in impacts. For example, since epistemic uncertainty in emission factors had a larger 
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influence on acidification than eutrophication impacts in this study, more precise measurement of acidification-

related emissions would have a relatively larger influence in reducing overall uncertainty in an impact. 

For the sake of simplicity, we illustrated a simple LCA example based on a previous work. It had far fewer 

variables and parameters than a full LCA study; in addition, the model was monotonic, which simplified the 

optimization algorithm in the simulation. Increasing the number of uncertain variables (especially imprecise 

variables) may increase the complexity of computation and even greatly overestimate uncertainty. Therefore, 

performing an initial sensitivity analysis of the LCA model is recommended (Heijungs 1996; Henriksson et al. 

2013) to focus on the input variables that influence potential impacts the most. This decrease in the number of 

uncertain input variables may accelerate the optimization algorithm, especially in more complex and non-

monotonic models. 

Correlations between random variables (i.e., inter-farm variability) were preserved in this study, while 

independence was assumed between random variables and imprecise parameters (emission factors). This 

assumption allowed a conservative confidence interval of impacts to be generated for all three scenarios, because 

all possible combinations of input variables were included in the stochastic simulation. However, representing 

dependence between random variables and imprecise parameters (if known) could improve the precision of 

predicted impacts. More research is needed on this issue to improve the validity of LCA results. 

The DST-based method constructs two boundary distributions using belief and plausibility functions. This 

structure has been interpreted as “imprecise probability” (Ferson et al. 2002), which covers all possible 

probability distributions. Although it reflects the true state of knowledge (e.g., incomplete information about 

emission factors), an extremely wide range of potential impact is likely to be less useful for decision makers. 

Thus, simplifying interpretation of results by decision makers remains an open question. To address this problem 

in LCA, Clavreul et al. (2013) calculated a “confidence index” (Dubois and Guyonnet 2011) to generate a 

weighted probability distribution. Decision makers can choose this confidence index subjectively, depending on 

whether their decision policies are more optimistic (close to the upper bound) or pessimistic (close to the lower 

bound). We concur that this kind of confidence index is useful for decision making in LCA studies when 

uncertainty is modeled with imprecise and incomplete information. 

 

5. Conclusion 
 

The classic probability method is rigorous in that it requires precise information to express an uncertain 

variable, but subjective assumption about its distribution may underestimate uncertainty in the predicted result. 

In addition, it cannot separate epistemic uncertainty from variability, meaning that decision makers will have no 

information about the relative influence of each on overall uncertainty. Our proposed method overcomes this 

limit by integrating fuzzy intervals to represent imprecise data (e.g., emission factors) in probability models. As 

a consequence, a distribution with two bounds and fuzzy intervals of mean impact was generated. Combining the 

effects of variability and epistemic uncertainty yields a wider range of potential impacts, which may influence 

decision making. Fuzzy intervals of mean impact model the uncertainty in mean values. The RIW of mean 

impact, as a comparative indicator, reveals the influence of epistemic uncertainty on uncertainty in impacts, 

which may help decision makers adopt appropriate strategies if they want to improve the reliability of LCA 

results. 

The paper demonstrated the application of DST in uncertainty analysis in a simple LCA study. Representing 

the lack of knowledge as fuzzy intervals differs from treating it as randomness. Thus, it provides a conservative 

but robust way to represent the state of knowledge in LCA studies when information is scarce. Its application in 

LCA is currently limited, however, due to its greater model complexity and, if epistemic uncertainty is large, 

greater difficulty in distinguishing potential differences among scenarios. Considering dependence among input 

variables is also important, since it gives more precise results, but techniques for doing so with fuzzy-interval 

variables are difficult or complex. Therefore, more research is needed to focus on these issues to improve the 

feasibility of this method in LCA. 
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