Using a life cycle approach to evaluate trade-offs associated with Payment for Ecosystem Services schemes

Girija Page¹; Aaron Simmons²; Bradley Ridoutt³; Warwick Badgery²; Bill Bellotti¹

- 1 University of Western Sydney, Australia
- 2 Orange Agricultural Institute, NSW Department of Primary Industries, Australia
- 3 Commonwealth Scientific and Industrial Research Organisation, Australia

Need to assess outcomes of PES using a life cycle approach

Displacement of impacts elsewhere

Environmental trade-offs

A life cycle approach can help to understand net environmental outcomes of PES schemes

Focus of this study

Question?

Q: What are the environmental trade-offs of CAMBI intervention at the case paddock?

Methods?

LCA-based GHG impacts

Data & analysis

CAMBI case paddock - 80 ha				
Before CAMBI (historical management)	Under CAMBI (current management)			
Cropping (wheat-canola rotation)	Improved pasture with sheep grazing			
GHG emissions from cropping	GHG emissions from sheep grazing			
	GHG seq. (soil C seq.) from cropping to grazing			

Net GHG effects: tCO₂-e ha⁻¹ yr⁻¹

Results (tCO₂-e ha⁻¹ yr⁻¹)

Item	GHG emissions before CAMBI		GHG emissions under CAMBI	Soil C seq. under CAMBI
	Wheat	Canola	Sheep grazing	Cropping to grazing
Farming inputs	0.44	0.59	0.10	-
Soil N ₂ O from fertilizer	0.14	0.116	-	-
N ₂ O emissions from crop residues	0.007	0.003	-	-
Sheep grazing	-	-	0.44	-
	0.58	0.70	0.54	1.27

CAMBI case paddock = net GHG sink

Future research

 CAMBI; net environmental benefits at the farm scale?

Summary/implications

LCA offers advantages for PES assessment

Displacement of impacts elsewhere

Environmental trade-offs

Final comment

Thank you!

Dr. Girija Page

Research Fellow – Sustainable Agri-Food Products

Phone: +61245701078

Email: G.Page@uws.edu.au

University of Western Sydney
K8 Hawkesbury Campus
Locked Bag 1797
Penrith 2751
NSW
Australia

